Multilevel Latent Class Models

نویسنده

  • Jeroen K. Vermunt
چکیده

The latent class (LC) models that have been developed so far assume that observations are independent. Parametric and nonparametric random-coefficient LC models are proposed here, which will make it possible to modify this assumption. For example, the models can be used for the analysis of data collected with complex sampling designs, data with a multilevel structure, and multiple-group data for more than a few groups. An adapted EM algorithm is presented that makes maximumlikelihood estimation feasible. The new model is illustrated with examples from organizational, educational, and cross-national comparative research.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Latent Class Models with Dirichlet Mixing Distribution ”

This report contains supplementary materials for the paper “multilevel latent class models with Dirichlet mixing distribution.” Section A provides insights of various multilevel latent class (MLC) models. Section B contains some technical results related to the EM algorithm. Section C includes proofs for asymptotic results. Sections D and E show additional results from simulation studies and th...

متن کامل

Multilevel and Latent Variable Modeling with Composite Links and Exploded Likelihoods

Composite links and exploded likelihoods are powerful yet simple tools for specifying a wide range of latent variable models. Applications considered include survival or duration models, models for rankings, small area estimation with census information, models for ordinal responses, item response models with guessing, randomized response models, unfolding models, latent class models with rando...

متن کامل

An application of Measurement error evaluation using latent class analysis

‎Latent class analysis (LCA) is a method of evaluating non sampling errors‎, ‎especially measurement error in categorical data‎. ‎Biemer (2011) introduced four latent class modeling approaches‎: ‎probability model parameterization‎, ‎log linear model‎, ‎modified path model‎, ‎and graphical model using path diagrams‎. ‎These models are interchangeable‎. ‎Latent class probability models express l...

متن کامل

Multilevel Latent Class Analysis: An Application of Adolescent Smoking Typologies with Individual and Contextual Predictors.

Latent Class Analysis (LCA) is a statistical method used to identify subtypes of related cases using a set of categorical and/or continuous observed variables. Traditional LCA assumes that observations are independent. However, multilevel data structures are common in social and behavioral research and alternative strategies are needed. In this paper, a new methodology, multilevel latent class ...

متن کامل

Continuous Time Survival in Latent Variable Models

We describe a general multivariate, multilevel framework for continuous time survival analysis that includes joint modeling of survival time variables and continuous and categorical observed and latent variables. The proposed framework is implemented in the Mplus software package. The survival time variables are modeled with nonparametric or parametric proportional hazard distributions and incl...

متن کامل

Students Reading Motivation: A Multilevel Mixture Factor Analysis

Latent variable modeling is a commonly used data analysis tool in social sciences and other applied fields. The most popular latent variable models are factor analysis (FA) and latent class analysis (LCA). FA assumes that there is one or more continuous latent variables – called factors – determining the responses on a set of observed variables, while LCA assumes that there is an underlying cat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003